BE Semester-III (EC) Question Bank

Network Analysis

All questions carry equal marks (10 marks)

Q.1	Explain Dot convention with suitable Example
Q.1 Q.2	Derive the inter-relationship between incidence matrix, Tie-set matrix and
	cut-set matrix.
Q.3	Give the difference between mesh and node.
Q.3 Q.4	Find the current through branch AB in this figure given below by Thevenin's theorem.
	A JAN IV + MAR NMM IV + MAR JAN IV + MAR JAN JAN JAN B
Q.5	Derive the equivalent circuit with voltage source in series with resistance by using source transformation technique.
Q.6	Find all mesh currents by using mesh analysis method. $5 \times + + + + + + + + + + + + + + + + + + $
Q.7	State Millman's theorem.

Q.8	Explain the concept of Super-mesh and Super-node with one suitable example for each.
Q.9	Write the property of laplace transform 1) Unit impulse 2) Unit step and 3) Unit ramp
Q.3	function
Q.10	Explain the concept of complex frequency.
Q.10	Derive the symmetry and reciprocity condition for transmission parameter
Q.11 Q.12	Give the application of h-parameter and also state the relation between h-parameter
Q.12	with transmission parameter
Q.13	What is network function? Define the terms "Driving point impedance" and "driving
Q.13	point admittance" of a one port network.
0.1.1	
Q.14	Derive the condition for a maximum power transfer
Q.15	In the given figure below switch K is opened at $t = 0$. Find the v, dv/dt and dv/dt at t =0+.
	2A K KI WW BOOM
Q.16	State and Explain Thevenin's Theorem and Norton's Theorem with suitable Example.
Q.17	Explain the following,
	(I) Linear Network (II) Passive Network (III) Active network (IV) Bilateral and
	Unilateral Element (V) Node and Mesh (VI) Ideal Voltage Source
Q.18	How inductor and Capacitor will have at t=0 and t= \Box . Draw equivalent
	networks.
	2A A K A MANA POPPARIH
Q.19	State and Explain Kirchoff's current Law and Kirchoff's voltage law.
Q.13 Q.20	Explain the rules for source transformation technique.
Q.20 Q.21	What are Y-Parameters and Z-Parameters? Derive the Expression for ZParameters
ل.21	in terms of Y-parameters and vice – versa.
Q.22	
	Explain the concept of the complex frequency.
Q.23	Explain in brief the concept of initial conditions.
Q.24	What is network function? Define the terms "Driving point impedance" and "driving
0.05	point admittance" of a one port network.
Q.25	Draw the dual network of given network.
	Min
	Anna man
	Z lon lon
	5am \$10a x
	A & rain
	1001-2
	\vee

Q.26	
	Draw the graph, tree and co-tree for the figure given.
	2.51
	MMMM .
	<m http:="" td="" www.<=""></m>
	The second
	Sa Martin
Q.27	Define the following terms,
	(I) Link (II) Graph (III) Tree (IV) Node (V) Branch
Q.28	Define and Prove the Initial value and Final value Theorem.
Q.29	Explain dot conversion rules for coupled circuits.
Q.30	Poles and Zeros of network functions
Q.31	Prove AB-BC=1.
Q.32	Explain: (i) Ideal Sources (ii) Controlled Sources.
Q.33	Explain: (i) Unilateral and Bilateral Networks (ii) Active
	and Passive Networks.
Q.34	Explain the advantages of Laplace transformation.
Q.35	Explain: (i) Inductance parameter (ii) Capacitance parameter.
Q.36	Determine the value of the current through the 10 V battery in the following
	network using Mesh analysis.
	1Ω
	$(1)_{1A}$ $\stackrel{1}{\underset{2\Omega}{\underset{2\Omega}{\underset{2\Omega}{\underset{2\Omega}{\atop{3}}}}}$
	UN 2211 2211 7-
Q.37	How inductor and Capacitor will have at t=0 and t= \Box .Draw equivalent networks.
Q.38	A series RLC circuit with $R = 2$ ohm, $L = 1$ H and $C = 0.5$ Farad with the applied
	voltage V (t) = sint. Find i(t) if the switch is closed at $t= 0$. Use Laplace transform
	method.
Q.39	What is time constant? Explain its significance through one suitable example.
Q.40	Obtain the transform representation of an inductor with initial current i(0-) in term
	of (i) Impedance (II) Admittance.